
CSEC BFS/DFS

CSEC

February 3, 2017

1











4 Sample Problem

Torn To Pieces - 2015 ICPC North American Qualifier
Author: Nathan Backman
Problem Statement

4.1 Description

You have arrived in The Big City but your journey is not yet complete. You
must still navigate the subway and get to your final destination. The information
booth in the subway station is unattended and fresh out of maps of the subway
system. On the floor you notice fragments of a map. Can you piece together
enough of the map to figure out how to get to your final destination?

Each fragment of the map happens to perfectly contain a single subway
station while also identifying all of the other stations that it connects to. Each
connection between stations is bi-directional such that it can be travelled going
either direction. Using all of the available fragments, your task is to determine
the sequence of stations you must pass through in order to reach your final
destination or state that there is no route if you don’t have enough information
to complete your journey.

4.2 Input

The first line of input has an integer, 2 ≤ N ≤ 32, that identifies the number of
pieces of the map that were found.

The following N lines each describe a station depicted on one of those pieces.
Each of these lines starts with the name of the station they describe and is
followed by a space-separated list of all of the station names that are directly
connected to that station (there may be as many as N − 1).

The final line identifies a starting station and a destination station. The
destination station is guaranteed to be different than the starting station.

Each station name is a string of up to 20 characters using only letters a–z and
A–Z. It is guaranteed that there is at most one simple route (without revisiting
stations) from the starting station to the destination station.

4.3 Editorial

For this problem, we’d like to construct an undirected unweighted graph from
the input. Note that during the construction we have to take care with the
specification of the nodes, specifically we may be queried for nodes which weren’t
already specified in the adjacency list. The goal is to find a path from the start
node to the end node. So we can use any of the algorithms previously discussed,
in this case we use a solution for both breadth first search and depth first search.

6

https://utoronto.kattis.com/problems/torn2pieces


4.4 Breadth First Search Solution

import queue

MAXN = 1000
N = 0
node_id = 0
nodes = {}
names = {}
adj = [[] for i in range(MAXN)]

def bfs(start_node , end_node):
q = queue.Queue ()
v = [False for i in range(MAXN)]
q.put((start_node , [start_node ])) # current node , list of visited nodes
v[start_node] = True
while not q.empty ():

state = q.get()
node = state [0]
path = state [1]
if node == end_node:

return path
for i in adj[node]:

if not v[i]:
q.put((i, path+[i]))
v[i] = True

return None

def apply_id(entry):
global nodes , node_id
if entry not in nodes:

nodes[entry] = node_id
names[node_id] = entry
node_id += 1

if __name__ == ’__main__ ’:
N = int(input())
for t in range(N):

data = str(input()).strip().split(’ ’)
for i in data:

apply_id(i)
for i in data [1:]:

adj[nodes[data [0]]]. append(nodes[i])
adj[nodes[i]]. append(nodes[data [0]])

data = str(input()).strip().split(’ ’)
apply_id(data [0])
apply_id(data [1])
start_node = nodes[data [0]]
end_node = nodes[data [1]]
ans = bfs(start_node , end_node)
if ans:

for i in ans:
print(names[i],end=’ ’)

print(’’)
else:

print(’no route found ’)

7



4.5 Depth First Search Solution

MAXN = 1000
N = 0
node_id = 0
nodes = {}
names = {}
adj = [[] for i in range(MAXN)]
v = [False for i in range(MAXN)]

def dfs(node , end_node , path):
path.append(node)
if node == end_node:

return path
ret = None
for i in adj[node]:

if not v[i] and not ret:
v[i] = True
ret = dfs(i, end_node , path [:])

return ret

def apply_id(entry):
global nodes , node_id
if entry not in nodes:

nodes[entry] = node_id
names[node_id] = entry
node_id += 1

if __name__ == ’__main__ ’:
N = int(input())
for t in range(N):

data = str(input()).strip().split(’ ’)
for i in data:

apply_id(i)
for i in data [1:]:

adj[nodes[data [0]]]. append(nodes[i])
adj[nodes[i]]. append(nodes[data [0]])

data = str(input()).strip().split(’ ’)
apply_id(data [0])
apply_id(data [1])
start_node = nodes[data [0]]
end_node = nodes[data [1]]
v[start_node] = True
ans = dfs(start_node , end_node , [])
if ans:

for i in ans:
print(names[i],end=’ ’)

print(’’)
else:

print(’no route found ’)

8


