
A project by …
William Granados, Jack Woodger, Anh Le,

Lucy Tishkina, Daniel Zhao

Plan-it
On the go spontaneous travelling

Product Introduction
Phase I

Travelling Apps and Technology

TripAdvisor Expedia Yelp Google Maps

TripAdvisor

Tons of options, but user needs to choose

Google Maps

I can’t hold all these choices!

Purpose of Plan-it

Save the planning

Purpose of Plan-it

The missing niche: plan-it for me

Let’s Plan-it!

What Makes Plan-it Unique

1) Random Venue Generation

2) Trip History (Personalization System)

3) Filters(Travel Modes), with
Google Maps Integration

Process
Phase II

The Team

Lucy – worked on map, and routing for destinations, api for venues

Daniel – search filters, CSS, display of search results through api

Jack – Itineraries & trip history

Anh – SQL database management

William – login & reviews, mongodb

Distribution of work

Challenges of Development Process

- front end java frameworks are challenging
- JSP & thymeleaf very different, and incompatible, and several tutorials for both
- addressed this through meetings and deciding best framework our needs

 - Merging different features with dependencies
- Itinerary and Trips and Login were isolated for a large portion of the sprint, and

when we needed to merge there were conflicts
- addressed this through feature branches and GitFlow

 - database management, integrations, and consistency
- database consistency across our laptops
- unfamiliarity with database technology (MYSQL, NOSQL) with MVC
 - works on my laptop but not yours!

Highlights of development
process

Pull requests
Include:
images,
description,
 code reviews!

Git workflow

No commiting to master!
Only feature branches!

Scrum Process

Product Backlog
Sprint Backlog
Daily Stand Up
Planning Poker
Sprint Reviews

Tools & Technologies

Software Architecture
Phase III

Software Architecture

View: Frontend

- Displays content to user based on

user’s role/status

- User experience/app flow different

for users who are registered and

logged allowing access to

additional features

- Displays model data to user

Model

Exposes and stores the application data

Keeps track of applications state

Responds to queries and updates

Controller

Routes the user through different views

Updates the model based on user input

Defines application behaviour based on user interaction

Backend

External apis

- We used Foursquare, for destinations and itineraries, and points of interests

Mongodb

- We used for storing review information

Mysql

- We used for storing sensitive user information

Design Patterns: Adapter

- Internal API acts as an adapter between

the external API’s

- The queries required for our application

are converted by the backend API to

queries to FOURSQUARE API to fetch

the relevant content

- For example, the internal API aggregates

results for points of interest indicated

by the user and returns the resulting

query by calling the external APIs

Design Patterns: Singleton

- Database connections use singleton

Design Patterns: Builder

- Used for the construction of Destination

objects

- Destinations can have a subset of fields

instantiated at initialization, which

would require many different

constructors

Access Control

Problem: How do we restrict access to features for Users

Solution: Java spring security
- Requiring User Objects to be present when rendering certain views
- Integration with SQL to encrypt the passwords and check hashes for authentication
- Storing information about the user in the session as a user object

